
Time-Parallel Computation ofPseudo-Adjoints for a Leapfrog Scheme�Christian H. Bischof and Po-Ting WuMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439-4844e-mail: fbischof,pwug@mcs.anl.govArgonne Preprint ANL/MCS-P639-0197AbstractThe leapfrog scheme is a commonly used second-order di�erence scheme forsolving di�erential equations. If Z(t) denotes the state of the system at timet, the leapfrog scheme computes the state at the next time step as Z(t+ 1) =H(Z(t); Z(t� 1);W ), where H is the nonlinear timestepping operator and W areparameters that are not time dependent. In this article, we show how the associa-tivity of the chain rule of di�erential calculus can be used to compute a so-calledadjoint xT � (dZ(t)=d[Z(0);W ]) e�ciently in a parallel fashion. To this end, we (1)employ the reverse mode of automatic di�erentiation at the outermost level, (2)use a sparsity-exploiting incarnation of the forward mode of automatic di�erenti-ation to compute derivatives of H at every time step, and (3) exploit chain ruleassociativity to compute derivatives at individual time steps in parallel. We reporton experimental results with a 2-D shallow-water equation model problem on anIBM SP parallel computer and a network of Sun SPARCstations.1 IntroductionThe leapfrog method is a commonly used second-order method for solving di�erentialequations (see, for example, [22, pp. 53 �.] , [8]). Let Z(t) and Z(t� 1) denote the�This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogramof the O�ce of Computational and TechnologyResearch, U.S. Department of Energy, underContract W-31-109-Eng-38. 1



current and previous state of a time dependent system, respectively. Except for possiblythe initial steps, a leapfrog scheme computes the state Z(t + 1) at the next time step asZ(t + 1) = H(Z(t); Z(t� 1);W ); (1)where Z 2 IRn, W 2 IRp (typically n � p) are system parameters that are not timedependent and H is the nonlinear operator advancing the system state. That is, thecode has the structure shown in Figure 1 (T denotes the last time step).Initialize Z(0) and W .Compute Z(1).for t = 1 to T doZ(t+ 1) = H(Z(t); Z(t � 1);W );Z(t� 1) = Z(t);Z(t) = Z(t + 1);end doFigure 1: Schematic of a Leapfrog SchemeLet r : IRn 7! IR be a scalar-valued function that is applied to Z(T ). In manyapplications, such as data assimilation, r is a relatively simple merit function, whichassesses the distance of the current state with respect to some desirable state. Typically,one is interested in d rd [Z(0);W ]: (2)The quantity (2) is a \long gradient" of size n + p, and, usually, so-called adjoint ap-proaches are employed for its e�cient computation. Adjoint approaches can ideallycompute the gradient at a 
oating-point cost that is a few times that of the function,independent of n+p, and can be derived either mathematically from the de�nition of theunderlying operator (the continuous adjoint) or by employing the so-called reverse modeof automatic di�erentiation on the computer code (the discrete adjoint). For details ondevelopment and use of adjoint approaches see, for example, the articles in [1, 20, 21].The ADOL-C [15], GRESS [19], Odyssee [23], and TAMC [12] tools implement the re-verse mode of automatic di�erentiation in an automated fashion. However, as explained,for example, in [6], the implementation of the reverse mode requires one to rememberor recompute all intermediate values that may nonlinearly impact the �nal result. Thatis, if a variable is assigned 100 di�erent values in the course of the execution of a code,we may need to remember all 100 values that it assumed during its lifetime. A snap-shotting scheme proposed by Griewank [13] suggests a way to overcome the potentiallyenormous storage requirements that would be induced by straightforward tracing. Thisapproach is being adopted in reverse mode tools [16, 3], but the fact that potentiallymany values need to be stored and/or recomputed still implies that the reverse mode2



may require considerable and unpredictable storage requirements to achieve the desiredlow 
oating-point complexity.In contrast, the so-called forward mode of automatic di�erentiation which is em-ployed, for example, at the outermost level of the ADIFOR [6] and ADIC [9] tools, haspredictable storage requirements. When s directional derivatives are computed, mem-ory and runtime increase by a factor that is at most O(s), independent of how linear ornonlinear the code is or how often storage is overwritten. Moreover, this upper boundmay be grossly pessimistic. In particular, by exploiting sparsity inherent in many large-scale optimization problems, gradients of such problems can be e�ciently computed withforward-mode based tools [5, 7]. More in-depth information on automatic di�erentiationcan be found in [4, 14], and an overview of currently available AD tools is provided atURL http://www.mcs.anl.gov/Projects/autodiff/AD Tools.In this article, we show how the reverse and forward modes of automatic di�eren-tiation can be combined to compute the adjoint quantity (2). In the literature, theterm \adjoint" is often used somewhat loosely to denote both the gradient to be com-puted and the either continuous or discrete adjoint approach that will be employed inits computation. To distinguish our work, where we compute the same gradient as ina true adjoint approach but with a di�erent methodology, we call it a \pseudo-adjoint"approach. The main algorithmic ingredients of our approach are� the exploitation of the sparsity of the Jacobian that is associated with the operatorH in typical stencil-based computations,� the concurrent computation of derivatives of H at di�erent time steps, and� a reverse-mode harness that accumulates the derivatives from di�erent time stepsin an e�cient fashion.This article is structured as follows. In the next section, we review the capabilities ofcurrent forward-mode based AD tools with respect to exploiting sparsity in computingJacobians, and we show how the Jacobians associated with individual time steps canbe computed in parallel. In Section 3, we show how the desired adjoint quantity (2)can be computed in a recursive fashion through (in essence) a series of sparse matrix-vector multiplications. In Section 4, we present experimental results with both a serialand a parallel implementation of this scheme on an IBM/SP parallel computer and anetwork of Sun SPARCstations. Throughout, we use a 2-D shallow-water equationsmodel problem [25, 24] for illustration. Lastly, we summarize our results.3



2 Computing Sparse Timestep Jacobians in ParallelIn typical stencil-based PDE solution schemes, one gridpoint is updated based on thevalues of a �xed number of surrounding gridpoints. Thus, the Jacobians @ H@ Z(t) and@ H@ Z(t� 1) indZ(t+ 1)d [Z(0);W ] = @ H@ Z(t) � dZ(t)d [Z(0);W ] + @ H@ Z(t � 1) � dZ(t� 1)d [Z(0);W ] + @ H@ W � dWd [Z(0);W ]; (3)will be sparse n � n matrices. In contrast, @ H@W , is likely to be a dense n � p matrix.Equation (3) was obtained by di�erentiating Equation (1) with respect to some setof parameters X, and all partial derivatives are evaluated at (Z(t); Z(t � 1);W ). Toillustrate, we consider a 2-D shallow-water equations model problem [24, 25].This code is simple but employs a leapfrog di�erence scheme and a stencil-basedpropagation operator. In this particular example, any row of� @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W �has at most 13 nonzeros and the nonzero structure of this matrix for t > 1 is shown inFigure 2 for n = 363 and s = 4. The total number of nonzeros is 3,101.
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e�ciently compute the derivatives of Z(T ) with respect to some of the initial values X,say, with automatic di�erentiation. In this approach, the derivative-augmented versiong H of H,[Z(t + 1); g Z(t+ 1)] = g H(Z(t); g Z(t); Z(t � 1); g Z(t � 1);W; g W ): (4)which computes both Z(t + 1) as in (1) andg Z(t + 1) = @ H@ Z(t) g Z(t) + @ H@ Z(t � 1) g Z(t� 1) + @ H@W g W (5)(all partial derivatives are evaluated at (Z(t); Z(t � 1);W )), was used to compute @ H@ Z(t) ,@ H@ Z(t� 1) , and @ H@W explicitly at each time step, and the overall derivatives dZ(t+ 1)dXwere computed explicitly through matrix-matrixmultiplications, as suggested by Equation(3).This approach can use either the SparsLinC library, which exploits sparsity with-out any prior knowledge of the sparsity structure, or a so-called compressed Jacobianapproach, which calls SparsLinC once to determine the sparsity structure and then com-putes a linear combination of columns of the original Jacobian based on a graph-coloringscheme. In either case, � @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W � can be computed at a cost that isindependent of n and dependent only on the cost associated with the PDE stencil.In the sequel, we refer to � @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W � evaluated at (Z(t); Z(t � 1);W )as the \timestep Jacobian" associated with timestep t. We note that, for a particulartime step t, we can compute its associated timestep Jacobian once Z(t) (and henceZ(t� 1)) has been computed. That is, to compute the Jacobian associated with aparticular time step, we require only that the simulation has progressed up to this timestep; we do not require the derivatives of previous time steps. Thus, with P processors,these individual time step Jacobians can be generated in the parallel fashion shown inFigure 3. Here, we precompute and store all time steps and the associated states Z(t) andthen compute the derivative matrices in a round-robin fashion. Alternatively, processescan be dynamically assigned the time steps whose Jacobian they are responsible for.The mypid() function returns the unique ID number of a particular process between 0and P � 1. Suitable invocations of g H to exploit the sparsity of the timestep Jacobianare detailed for this particular example in [11] and, in general, in [2, 7]. The schemeoutlined in Figure 3 allows us to generate all timestep Jacobians in a parallel fashion.The additional 
oating-point and memory complexity is a �xed multiple of that of thecomplexity for H, depending on the particular stencil, but not the size of the grid. Wealso note that a production version of this approach would incorporate the snapshottingapproach suggested by Griewank [13] to decrease the memory requirements associatedwith storing timestep Jacobians. We omitted this aspect in our implementation in orderto concentrate on the novel ideas. 5



Initialize Z(0) and W .Compute and save Z(1).for t = 1 to T doZ(t+ 1) = H(Z(t); Z(t � 1);W );Save Z(t + 1);Z(t� 1) = Z(t);Z(t) = Z(t + 1);end dofor t = 1 to T doif ( mod(t,P) == myid()) thenif (t == 1) thenCompute and store � dZ(1)dZ(0) ; d Z(1)dW �.elseInvoke g H(Z(t); g Z(t); Z(t � 1); g Z(t � 1);W; g W ) with suitableinitializations for g Z(t); g Z(t � 1), and g W to computeZ(t + 1) as well as g Z(t+ 1) = � @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W �.Store [t; @ H@ Z(t) ; @ H@ Z(t � 1) ; @ H@W ]end ifend ifend doFigure 3: Schematic for Computing Timestep Jacobians in Parallel
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3 A High-Level Adjoint RecursionReturning to our original problem of computing the adjoint (2), we observe that di�er-entiation of (1) impliesd rd [Z(0);W ] = d rdZ(T ) � dZ(T )dZ(0)= xT1�n � dZ(T � 1)d [Z(0);W ]n�(n+p) + yT1�n � dZ(T � 2)d [Z(0);W ]n�(n+p) +wT1�(n+p);where, invoking (3), we havexT1�n = d rdZ(T )1�n � @ H(Z(T � 1); Z(T � 2);W )@ Z(T � 1) n�n;yT1�n = d rdZ(T )1�n � @ H(Z(T � 1); Z(T � 2;W )@ Z(T � 2) n�n; andwT1�(n+p) = @ H(Z(T � 1); Z(T � 2);W )@ W n�p � 0p�n ; Ip�p � :Here I is the identity, 0 is a zero matrix, and subscripts indicate the size of matrices. Forclarity we also indicated the arguments for which the partial derivatives were computed.Note that x and y are n-vectors, while w is a vector of size n + p. The computation ofxT and yT involves two multiplications of sparse n � n matrices with a dense n-vector,the computation of w the left-multiplication of a dense n� p matrix by a row-vector oflength n. If we recursively apply this approach to the computation of xT � dZ(T � 1)d [Z(0);W ]and yT � dZ(T � 2)d [Z(0);W ] , we will form the desired adjoint vector through a chain of sparsematrix-vector multiplications involving the timestep Jacobians that were computed inFigure 3. The resulting algorithm is shown in Figure 4. Note that for t == 1, thecomputation of y and z involves the left-multiplication of an n� (n+ p) matrix with ann-vector. To compute d rd [Z(0);W ], we then execute the algorithm in Figure 3, followedby an invocation of leapfrog adjoint( d rdZ(T ) ; T � 1):If n� p, the main work in the scheme outlined in Figure 4 at every time step consistsof two left-multiplications of a sparse n� n matrix with an n-vector and the generationof two recursive processes. Thus, a total of 2T�1 n� n sparse matrix-vector multiplieswill be computed.We can reduce the number of matrix-vector multiplies by turning the leapfrog schemeinto an Euler scheme. To this end, we adjoin successive time steps and de�ne an extended7



function leapfrog adjoint(x; t)if ( t > 1) thenyT = xT � @ H@ Z(t) ;zT = xT � @ H@ Z(t � 1) ; 9>=>; /* left-multiplication of sparse *//* n� n matrix by an n vector */wT = xT � @ H@W � � Op�n ; Ip�p � ;y = leapfrog adjoint(y; t � 1);z = leapfrog adjoint(z; t� 1); � /* binary recursion */result = w + y + z;elseresult = xT �� dZ(1)dZ(0) ; d Z(1)dW � ;end ifreturn(result);end functionFigure 4: Recursive Evaluation of Adjoint for a Leapfrog Schemestate vector Z(t) = (Z(t); Z(t � 1)). We compute the new next state Z(t + 1) asZ(t + 1) = (Z(t + 1); Z(t))= (H(Z(t); Z(t � 1);W ); Z(t))= H(Z(t); Z(t � 1);W )= H(Z(t);W ); (6)with the \new" update operator HH2n�(2n+p) = 0@ Hn�(2n+p)In�n 0n�(n+p) 1A : (7)Di�erentiating (6) with respect to [Z(0);W ], we obtaindZ(t+ 1)d [Z(0);W ] = @ H@ Z(t) � dZ(t)d [Z(0);W ] + @ H@ W � dWd [Z(0);W ] ;8



which, taking into account (7), is equivalent to0BB@ dZ(t+ 1)d [Z(0);W ]dZ(t)d [Z(0);W ] 1CCA = 0@ @ H@ Z(t) @ H@ Z(t � 1)In�n 0n�n 1A �0BB@ dZ(t)d [Z(0);W ]dZ(t� 1)d [Z(0);W ] 1CCA (8)+0@ @ H@W0n�p 1A �� dWd [Z(0);W ] � :function euler adjoint(x; t)if ( t > 1) thenyT = xT �0@ @ H@ Z(t) @ H@ Z(t � 1)In�n 0n�n 1A ;wT = xT �0@ @ H@W0n�p 1A � � 0p�n ; Ip�p � ;y = euler adjoint(y; t� 1); /* linear recursion */result = w + y;elseresultT = xT �0@ dZ(1)dZ(0) dZ(1)dWIn�n 0n�p 1A ;end ifreturn(result);end functionFigure 5: Recursive Evaluation of Adjoint for an Euler SchemeThe recursive evaluation of an adjoint associated with Z is shown in Figure 5. Whileall the extended state vectors are of length 2n, the exploitation of the matrix structureapparent in (9) implies that the amount of linear algebra work per time step remains,to �rst order, unchanged. However, since we now have a linear recursion, the overallnumber of matrix-vector multiplications is 2(T � 1). To compute d rd [Z(0);W ], we wouldthen execute the algorithm in Figure 3, followed by an invocation ofeuler adjoint(� d rdZ(T ) ; 01�n � ; T � 1):9



To summarize, the work required for the generation of the timestep Jacobians, asillustrated in Figure 3, is a �xed multiple (independent of n) of the work to evaluate H.This holds with respect to both runtime and memory, since we employ a sparse variant ofthe forward mode with predictable memory requirements. The accumulation scheme inFigure 5, in contrast, is an incarnation of the reverse mode of automatic di�erentiationfor an Euler scheme at a level where we consider H to be an elementary operator. Thesecond-order leapfrog di�erence scheme was converted to a �rst-order Euler scheme byadjoining successive time steps. E�ciency was maintained by exploiting the specialstructure of the Jacobians of the resulting Euler scheme.4 Experimental ResultsWe implemented the pseudo-adjoint approach on an IBM SP computer and a networkof Sun SPARCstations. For the problems shown in Table 1, we computed the sensitivityof the value of Z(T ) with respect to interior gridpoint number 101, that is, r = e101,where ei is the ith canonical unit vector, for a period of T = 60 time steps.Table 1: Shallow Water Equations ModelsGrid Size n p11� 11 3 � 11 � 11 = 363 416� 16 3 � 16 � 16 = 768 421� 21 3 � 21 � 21 = 1323 4We computed the sparse Jacobian shown in Figure 2 using SparsLinC or, alterna-tively, using SparsLinC in the �rst time step to determine the sparsity structure and thenusing the compressed Jacobian approach in subsequent time steps. The latter approachis feasible here because the sparsity pattern does not change for t > 2. In contrast,continuous use of SparsLinC could accommodate varying sparsity patterns.4.1 Serial ImplementationTable 2 shows (1) the overall runtime of the black-box ADIFOR approach, (2) thetime spent by the pseudo-adjoint approach in the computation of the sparse Jacobian,using either the SparsLinC or the compressed Jacobian approach, and (3) the timespent in matrix-vector multiplications. In the serial implementation, the initial functioncomputation loop shown in Figure 3 is not present. The code does a fair amount ofcopying, and these memory accesses account for the considerable di�erence between10



the Jacobian computation and matrix-vector multiplication times. Table 3 contains asummary of the memory requirements of these runs (the numbers for the IBM and Sunplatforms are similar).Table 2: Serial Runtime for Pseudo-Adjoint Approach (in seconds)IBM SP Node SPARCstation 511� 11 16� 16 21� 21 11� 11Black-Box ADIFOR 4.24 36.68 71.98 26.63Pseudo-adjoint Using SparsLinCTotal 6.90 27.52 69.46 13.94Jacobians 4.90 17.77 42.98 12.26Pseudo-adjoint Using Compressed JacobianTotal 4.53 18.50 51.31 9.09Jacobians 1.93 8.70 21.51 6.55Matrix-Vector Mult 0.53 1.62 2.21 0.15Table 3: Serial Memory Requirements for Pseudo-Adjoint Approach (in Mbytes)11� 11 16� 16 21� 21Black-Box ADIFOR 4.70 18.82 53.31SparsLinC 4.67 12.23 27.15Compressed Jacobian 4.81 12.46 27.50We see that compared with the black-box ADIFOR approach, which propagates n+pderivatives for each of the n grid points and hence has an O(n2) complexity with respectto both memory and runtime, the pseudo-adjoint approach shows a much weaker rate ofgrowth since both the computation of the individual time-step Jacobians and that of thesparse matrix-vector multiplies require O(n) memory and 
oating-point operations. Forexample, while the pseudo-adjoint approach is slower than black-box ADIFOR for the11� 11 problem on the IBM, it beats ADIFOR on the 21� 21 problem. We fare evenbetter on the SPARCstation, where vector operations are, in comparison with scalarcode, not executed as fast as on the IBM. For the larger problems, we also observe amemory savings of a factor of almost two.The code for the shallow water equations model problem is based on a �ve-pointstencil and updates the east and west wind components as well as the geopotential ata cost of 59 
ops per gridpoint. To simulate performance for a computationally moreintensive problem, where the computation of the sparse Jacobian corresponding to onetime step requires more work, we executed the code for one time step from 1 (the original11



problem) to 16 times. Thus, we increased the work required for black-box ADIFOR aswell as the timestep Jacobian by the repetition factor, while the cost of the matrix-matrix multiply, the number of memory moves, and the memory requirements of thecode remain unchanged. The resulting computational behavior is shown in Figure 6.
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We see that in all these �gures, the initial function computation and the matrix-vector accumulation, which are the serial parts of the computation, take very little timeoverall. Figure 11 shows the speedup we obtain on various numbers of processors onthe IBM SP and SPARCstation networks using a repetition factor of 1 and 16. Themore work that is done within one time step (the work that is performed in parallel),the better we do. Hence, speedup increases with problem size and with the numberof repetitions. It trails o� as there are not enough time steps to keep the derivativeslaves busy, in particular in the compressed Jacobian scheme, where all processes needto invoke the relatively slow SparsLinC process only once at the beginning.
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ADIFOR, using eight processors with the compressed Jacobian approach for the 21�21grid, runtime was reduced for the original problem from 72 seconds to 8.4, a speedupof 8.5, and for the problem with 16 repetitions runtime was reduced from 931 to 13.4seconds, a speedup of almost 70. For the 11� 11 problem on a four-node Sun network,this approach reduced runtime from 27 to 8.4 seconds (a speedup of 3.2) on the originalproblem, and for the problem with 16 repetitions runtime was reduced from 327 to 15.3seconds, a speedup of 21. In all cases, the derivative values agreed to machine precision.5 ConclusionsIn this article, we showed how to compute a so-called adjoint for a leapfrog di�erencescheme with a combination of the forward and reverse modes of automatic di�erentiation.We developed a generic harness that employs the reverse mode of automatic di�erenti-ation at a level that considers the timestepping operator as an atomic operation, andwe evaluated the Jacobian associated with a particular timestep with a forward-modebased tool, exploiting the sparsity of the underlying operator. Because of the associativ-ity of the chain rule, Jacobians corresponding to di�erent time steps can be evaluatedin parallel. The resulting scheme exhibits the predictable 
oating-point and memoryrequirements of the forward mode, independent of the complexity and nonlinearity ofthe underlying operator, while still retaining the 
oating-point e�ciency of the reversemode.The development of better automatic di�erentiation schemes is a current researcharea. Hybrid schemes that combine the forward and hybrid modes have been shown tohold considerable promise. For example, [10] shows that it can be advantageous to em-ploy reverse-mode pieces inside a forward-mode-oriented driver. The paper [13] goes evenfurther and considers \freestyle" automatic di�erentiation schemes on a computationalgraph representation of the program. The work we presented further shows the promiseof approaches that exploit chain rule associativity and employ principles of automaticdi�erentiation and automatic di�erentiation tools in a fashion that takes advantage ofuser insight at a high level. For example, our algorithms assume a leapfrog (or Euler)explicit di�erence scheme and a sparse timestep propagator H. The di�erentiation of Hitself is handled by automatic di�erentiation. In our view, work on easily retargetablemethod-speci�c harnesses, such as the one we developed for a leapfrog scheme, and theuse of automatic di�erentiation tools, which are rapidly improving, will go a long waytoward \fast and easy" derivatives. 16
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